Subscribe to RSS
DOI: 10.1055/s-0029-1231056
© Georg Thieme Verlag KG Stuttgart · New York
Combinatory Effects of Androgen Receptor Deficiency and Hind Limb Unloading on Bone
Publication History
received 13.02.2009
accepted 15.06.2009
Publication Date:
23 July 2009 (online)

Abstract
Male sex hormones play a critical role in regulation of bone metabolism. In male mice lacking androgen receptor (AR), osteopenia and high turnover state in bone remodeling have been reported. However, androgen receptor's role in disuse-induced osteopenia is not known. Therefore, we examined the effects of AR deficiency on unloading-induced bone loss. Wild type or androgen receptor deficient mice (ARKO) were subjected to hind limb unloading (HU) or normal housing (Control). The groups of mice were as follows; wild type control mice (Group WT-Cont), ARKO control mice (Group ARKO-Cont), wild type HU mice (Group WT-HU), and ARKO-HU mice (Group ARKO-HU). HU reduced cancellous bone mass in ARKO (ARKO-HU) by about 70% compared to ARKO-Cont and this reduction rate was over two-fold more than that of wild type (WT-HU) (reduction by less than 30% compared to WT-Cont). Combination of ARKO and HU (ARKO-HU) resulted in the least levels of cortical bone mass and bone mineral density among the four groups. ARKO-HU group indicated the highest levels of systemic bone resorption marker, deoxypyridinoline. Osteoclast development levels in the cultures in ARKO-HU derived bone marrow cells were the highest among the four groups. These data suggest that combination of androgen receptor deficiency and hind limb unloading results in exacerbation of disuse-induced osteopenia due to the enhanced levels of bone resorption.
Key words
bone mineral density - osteoporosis - osteopenia - osteoblast
References
- 1
Vicente-Rodriguez G.
How does exercise affect bone development during growth?.
Sports Med.
2006;
36
561-569
Reference Ris Wihthout Link
- 2
Nordstrom A, Karlsson C, Nyquist F, Olsson T, Nordstrom P, Karlsson M.
Bone loss and fracture risk after reduced physical activity.
J Bone Miner Res.
2005;
20
202-207
Reference Ris Wihthout Link
- 3
Takata S, Yasui N.
Disuse osteoporosis.
J Med Invest.
2001;
48
147-156
Reference Ris Wihthout Link
- 4
LeBlanc A, Schneider V, Shackelford L.
Bone mineral and lean tissue loss after long duration space flight.
J Musculo Neur Interact.
2000;
1
157-160
Reference Ris Wihthout Link
- 5
LeBlanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM.
Bone mineral loss and recovery after 17 weeks of bed rest.
J Bone Miner Res.
1990;
5
843-850
Reference Ris Wihthout Link
- 6
Liedert A, Kaspar D, Blakytny R, Claes L, Ignatius A.
Signal transduction pathways involved in mechanotransduction in bone cells.
Biochem Biophys Res Commun.
2006;
349
1-5
Reference Ris Wihthout Link
- 7
Looker AC, Orwoll ES, Johnston Jr CC, Lindsay RL, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP.
Prevalence of low femoral bone density in older U.S. adults from NHANES III.
J Bone Miner Res.
1997;
12
1761-1768
Reference Ris Wihthout Link
- 8
Orwoll ES.
Osteoporosis in men.
Endocr Rev.
1995;
16
87-116
Reference Ris Wihthout Link
- 9
Stepan JJ, Lachman M, Zverina J, Pacovsky V, Baylink DJ.
Castrated men exhibit bone loss: effect of calcitonin treatment on biochemical indices
of bone remodeling.
J Clin Endocrinol Metab.
1989;
69
523-527
Reference Ris Wihthout Link
- 10
Morote J, Orsola A, Abascal JM, Planas J, Trilla E, Raventos CX, Cecchini L, Encabo G, Reventos J.
Bone mineral density changes in patients with prostate cancer during the first 2 years
of androgen suppression.
J Urol.
2006;
175
1679-1683
Reference Ris Wihthout Link
- 11
Shahinian VB, Kuo YF, Freeman JL, Goodwin JS.
Risk of fracture after androgen deprivation for prostate cancer.
N Engl J Med.
2005;
352
154-164
Reference Ris Wihthout Link
- 12
Qoubaitary A, Swerdloff RS, Wang C.
Advances in male hormone substitution therapy.
Expert Opin Pharmacother.
2005;
9
1493-1506
Reference Ris Wihthout Link
- 13
Gori F, Hofbauer LC, Conover CA, Khosla S.
Effects of androgens on the insulin-like growth factor system in an androgen-responsive
human osteoblastic cell line.
Endocrinology.
1999;
140
5579-5586
Reference Ris Wihthout Link
- 14
Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B, Broxmeyer H, Manolagas SC.
Increased osteoclast development after estrogen loss: mediation by interleukin-6.
Science.
1992;
257
88-91
Reference Ris Wihthout Link
- 15
Srivastava S, Toraldo G, Weitzmann MN, Cenci S, Ross FP, Pacifici R.
Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-kappa
B ligand (RANKL)-induced JNK activation.
J Biol Chem.
2001;
276
8836-8840
Reference Ris Wihthout Link
- 16
Kawano H, Sato T, Yamada T, Matsumoto T, Sekine K, Watanabe T, Nakamura T, Fukuda T, Yoshimura K, Yoshizawa T, Aihara K, Yamamoto Y, Nakamichi Y, Metzger D, Chambon P, Nakamura K, Kawaguchi H, Kato S.
Suppressive function of androgen receptor in bone resorption.
Proc Natl Acad Sci U S A.
2003;
100
9416-9421
Reference Ris Wihthout Link
- 17
Lee KC, Lanyon LE.
Mechanical loading influences bone mass through estrogen receptor alpha.
Exerc Sport Sci Rev.
2004;
32
64-68
Reference Ris Wihthout Link
- 18
Lee K, Jessop H, Suswillo R, Zaman G, Lanyon L.
Endocrinology: bone adaptation requires oestrogen receptor-alpha.
Nature.
2003;
424
389
Reference Ris Wihthout Link
- 19
van den Beld AW, de Jong FH, Grobbee DE, Pols HA, Lamberts SW.
Measures of bioavailable serum testosterone and estradiol and their relationships
with muscle strength, bone density, and body composition in elderly men.
J Clin Endocrinol Metab.
2000;
85
3276-3282
Reference Ris Wihthout Link
- 20
Snow-Harter C, Whalen R, Myburgh K, Arnaud S, Marcus R.
Bone mineral density, muscle strength, and recreational exercise in men.
J Bone Miner Res.
1992;
11
1291-1296
Reference Ris Wihthout Link
- 21
Kitahara K, Ishijima M, Rittling SR, Tsuji K, Kurosawa H, Nifuji A, Denhardt DT, Noda M.
Osteopontin deficiency induces parathyroid hormone enhancement of cortical bone formation.
Endocrinology.
2003;
144
2132-2140
Reference Ris Wihthout Link
- 22
Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK.
Bone loss and bone size after menopause.
N Engl J Med.
2003;
349
327-334
Reference Ris Wihthout Link
- 23
Kannus P, Sievänen H, Palvanen M, Järvinen T, Parkkari J.
Prevention of falls and consequent injuries in elderly people.
Lancet.
2005;
366
1885-1893
Reference Ris Wihthout Link
- 24
Imai Y, Nakamura T, Matsumoto T, Inoue K, Kondoh S, Sato T, Takaoka K, Kato S.
Osteoblastic androgen receptor regulates cortical bone mineral density.
J Bone Mineral Res.
2008;
23
s35
Reference Ris Wihthout Link
- 25
Nakamura T, Imai Y, Matsumoto T, Sato S, Takeuchi K, Igarashi K, Harada Y, Azuma Y, Krust A, Yamamoto Y, Nishina H, Takeda S, Takayanagi H, Metzger D, Kanno J, Takaoka K, Martin TJ, Chambon P, Kato S.
Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand
in osteoclasts.
Cell.
2007;
130
811-823
Reference Ris Wihthout Link
- 26
Pfaffl MW.
A new mathematical model for relative quantification in real-time RT-PCR.
Nucleic Acids Res.
2001;
29
2002-2007
Reference Ris Wihthout Link
Correspondence
Dr. M. Noda
Department of Molecular Pharmacology
Medical Research Institute
Tokyo Medical and Dental University
3-10 Kanda-Surugadai
2-chome Chiyoda-ku
Tokyo 101
Japan
Phone: +81/3/5280 80 66
Fax: +81/3/5280 80 66
Email: noda.mph@mri.tmd.ac.jp